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Support Vector Machines for Predictive Modeling in Heterogeneous
Catalysis: A Comprehensive Introduction and Overfitting

Investigation Based on Two Real Applications
L. A. Baumes, J. M. Serra, P. Serna, and A. Corma*

Instituto de Tecnologı´a Quı́mica (UPV-CSIC), aV. Naranjos s/n, 46022 Valencia, Spain

ReceiVed July 18, 2005

This works provides an introduction to support vector machines (SVMs) for predictive modeling in
heterogeneous catalysis, describing step by step the methodology with a highlighting of the points which
make such technique an attractive approach. We first investigate linear SVMs, working in detail through a
simple example based on experimental data derived from a study aiming at optimizing olefin epoxidation
catalysts applying high-throughput experimentation. This case study has been chosen to underline SVM
features in a visual manner because of the few catalytic variables investigated. It is shown how SVMs
transform original data into another representation space of higher dimensionality. The concepts of Vapnik-
Chervonenkis dimension and structural risk minimization are introduced. The SVM methodology is evaluated
with a second catalytic application, that is, light paraffin isomerization. Finally, we discuss why SVMs is
a strategic method, as compared to other machine learning techniques, such as neural networks or induction
trees, and why emphasis is put on the problem of overfitting.

Introduction

Discovery of heterogeneous catalysts for a specific reaction
encompasses understanding the different reaction mechanism
steps. Especially important is the understanding of the
activation/coordination of the reactants over the different
active sites driving to specific catalyst activities and selective
reaction pathways.1 Nevertheless, catalyst discovery is mostly
an empirical process which applies fundamental knowledge
(first principles) for defining/designing the experimental
multiparametrical space to be explored/mapped in the search
for materials with the desired catalytic properties. Typical
catalyst parameters include elemental composition, prepara-
tion conditions, and synthetic routes. The application of high-
throughput (HT) or combinatorial techniques in the field of
materials science and catalysis2 increases exponentially the
number of samples to be processed and, therefore, the
number of catalyst variables to be simultaneously explored.
As a result, the possibility of finding new catalysts in a
shorter time may be strongly increased. The need for refined
and automatic search strategies aimed at minimizing the
number of samples during the space exploration has enabled
statistical approaches and intelligent computation to become
a key part in catalyst discovery and optimization.

Different machine learning techniques have been success-
fully applied for modeling HT experimental data obtained
during the exploration of multicomponent heterogeneous
catalysts. This kind of models is called structure-activity
relationships (SAR), and their implementation in HT ex-
perimentation has succeeded as shown in ref 3, in which
the statistical practice in this approach is thoroughly re-
viewed. This type of model allows predicting the catalytic
performance of untested materials, taking into account their
composition or preparation conditions as input variables.

Moreover, these predictions can subsequently be applied to
the design of the next catalyst libraries in such a way that
only the most promising catalysts are selected (so-called
virtual or in silico screening) and included in the final library
to be experimentally synthesized and tested for a specific
catalytic reaction. Such an approach qualified as a “filter”
by the authors has been employed with NN.4,5 The modeling
approaches may also be based on equivalence class search
as first shown in ref 6 and then adopted for new studies.7

Among the different machine learning techniques, neural
networks (NNs) have often yielded the best modeling results.
NNs have been applied for modeling and prediction of the
catalytic performance of libraries of materials for diverse
reactions, such as oxidative dehydrogenation of ethane,8

water gas shift,9 and methanol synthesis.10 Nevertheless, NNs
may suffer in some cases from overfitting of the training
data, reproducibility problems, and lack of information
regarding the classification produced.11,12 There is still,
therefore, the need to develop more robust and highly
accurate modeling techniques in heterogeneous catalysis. On
the other hand, numerous classical direct optimization
methods13 or new ones14 have been employed. Very recently,
a new biased statistical methodology has been proposed,15

differing significantly from pure modeling or optimization
approaches as it aims at selecting “interesting”, that is,
strategic, future samples to make better use of a modeling
technique in a later stage. The recognition of the search space
is shown to be tremendously increased.

Here, we focus on modeling as a decision help for a
classification problem, that is, the automatic discrimination
of good/bad experiments to be conducted. SVMs, which have
exhibited outstanding performances in handwritten digit
recognition, object recognition, speaker identification, face
detection in images, and text categorization, can be a suitable
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method to overcome some of the problems such as overfit-
ting, parameter settings, etc. Although the development of
SVMs started in the late 1970s,16 it has recently received
more attention. SVM techniques have been extensively
applied in pattern recognition problems17 and QSPR model-
ing in drug discovery and medicinal chemistry,18 process
engineering,19 and physical chemistry,20 for example, for the
prediction of the heat capacity of organic molecules.
However, to the best of our knowledge, SVMs have not been
applied to the prediction of catalytic performance of hetero-
geneous catalysts, despite the fact that this methodology may
be very helpful, especially when combined with HT tech-
niques at early stages. Here, performances are discretized,
and models should be used for selecting/discarding future
experiments to be synthesized and tested.

The purpose of this work is, first, to present such a
relatively new and unknown methodology to the material
science domain, then to provide a comprehensive introduc-
tion of the points that differ from other well-known and
commonly employed techniques, such as the representation
of the data, the selection mode of the optimal model, and
the use of the basic ideas behind SVMs for HT heterogeneous
catalyst discovery. The SVM methodology is detailed, step-
by-step, and based on experimental data derived from a HT
study aiming at optimizing olefin epoxidation catalysts. We
review a wide range of SVM techniques, including the dual
characteristic representation of linear machine learning,
feature spaces, learning theory, and generalization theory that
are necessary for a comprehensive introduction to SVM.
However, the convex optimization used internally is not
described due to its popularity and in an effort not to
introduce additional difficulty, which can be avoided without
losing comprehension. We discuss the theoretical aspects of
SVMs, which make them an attractive method for catalytic
modeling, as compared to other learning strategies, such as
NN or induction graphs. The SVM methodology is evaluated
using experimental data derived from exploration/optimiza-
tion of heterogeneous catalysts in two different industrial
fields: oil refining and petrochemistry, the selected reactions

for each application beingn-alkane isomerization in gasoline
and olefin epoxidation. We have finally placed special
emphasis on the problem of overfitting, and a comparison
of generalization is done with classification trees (CTs).

Experimental Datasets

Figure 1 shows the quality distribution of the two
experimental datasets and the selected thresholds for dis-
cretization of the data, that is, for classifying them into good
(A) or bad (B) catalyst classes, or alternatively, active (A)
or inactive (B) materials. Since the final application of the
SVM models is support of the decision made during the
experimental design; that is, helping during the selection of
the experiments to be conducted, it appears logical that a
“yes” or “no” answer makes the choice straightforward.
Although all the SVMs described later are binary classifiers,
they can be easily combined to handle the multiclass case.
A simple and effective way is to trainN one-versus-rest
classifiers for theN-class case. Then the class for a test point
is defined by the majority or the largest positive distance.21

It has to be noted that achieving the SVM implementation
after reading such a paper is not an objective. All experiments
are based on calculations with the free source code called
SVMlight.22 We think the integration of programming code,
or pseudocode, would have made the paper blurry without
being of additional help for the chemist.

Olefin Epoxidation. The first experimental dataset is
derived from a previous work aimed at the optimization of
epoxidation catalysts based on titanium silicate mesoporous
materials.23,5 In that work, the experimental design was ruled
by a hybrid optimizer comprising an evolutionary algorithm
assisted by a NN, and experimentation was accomplished
using HT techniques. Epoxidation of cyclohexene withtert-
butyl hydroperoxide at 60°C and atmospheric pressure was
used as the probe reaction for the optimization procedure.
The objective function was the yield of cyclohexene epoxide,
whereas the variables to be optimized were the molar
concentrations of some of the components of the starting
gel, that is OH-, titanium, tetramethylammonium (TMA),

Figure 1. Thresholds used for discretization of the two datasets into a two-class problem taking into account the selected fitness output
(specific field or conversion).
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and cetyltrimethylammonium (CTMA). Here, we first use a
subset (Table 1a) of the whole dataset for the introduction
of linear classifiers. Table 1a is composed of catalysts in
which Ti and TMA ratios are bounded into very little ranges
(i.e., nearly constant), and a threshold value of 81% of
epoxide yield is used for creating two classes. This value is
related to the level of activity, as compared with a reference
catalyst, in such a way that class A represents catalysts more
active than the reference, whereas class B does not reach
this level of activity. Then we consider an increased subset
of data composed of more cases (Table 1b) for the nonsepa-
rable case with the same separation value. Finally, we
consider the full available set of both data and variables (see
Figure 1 and Supporting Information). A discretization is
done at 87.6% considering the final epoxide yield for
defining the two classes.

Isomerization. Isomerization of linear paraffins to produce
their branched isomers is one of the possible methods for
increasing the octane number in gasoline. The isomerization
reaction scheme involves the sequential isomerization of the
paraffin into the mono-, di-, and tribranched isomers;
however, cracking side reactions occur, reducing the isomer-
ization yield.n-Alkane isomerization is a reaction catalyzed
by bifunctional catalysts consisting of an acid support
impregnated with Pt (acid+ hydrogenating metal). Industri-
ally practiced catalysts are, for example, Pt-chlorinated
alumina and Pt-mordenite.24

The second dataset was taken from a previous work25

aimed at the discovery bifunctional oxide-based isomerization
catalysts. The probe reaction was the isomerization of

n-pentane under 30 bar of H2 at temperatures ranging from
200 to 240°C. The general catalyst formulation includes an
oxide support, an acidity enhancer, a metallic promoter, and
0.5 wt % Pt. Catalyst optimization was ruled by a conven-
tional evolutionary algorithm, and three generations of 24
catalysts were run. Objective function was the isopentane
yield at 200°C. Due to the difficulty of this reaction, the
creation of the classes A and B has been done considering
a threshold value of 5%, since the aim is just to distinguish
catalytic and noncatalytic materials.

Step-by-Step SVM Computation

SVMs belong to learning strategies called machine learn-
ing. When computers are applied to solve complex problems,
situations can arise in which there is no known method for
computing the desired output from inputs. An alternative
strategy, known assuperVisedlearning strategy, attempts to
learn the input/output functionality from examples. A learn-
ing problem with a finite number of outputs, expressed as
categories, is referred asmulticlass classification,whereas
for real-valued outputs, the problem becomes known as
regression.

A main difference between machine learning methods and
classical statistics is that the former does not assume any
previous parametric form of the appropriate model to use.
Most machine learning techniques may, thus, be classified
in the set of distribution-free methods, a term used to
highlight an a priori independence between the data set and
a predefined set of models. Nevertheless, machine learning
approaches do not exclude taking advantage of parametric
assumptions, if they hold. Thus, instead of starting with
assumptions about a problem, machine learning uses a
toolbox approach to identify the correct model structure
directly from the available data. One of the main conse-
quences is that the machine learning methods typically
require larger data sets than parametric statistics. A com-
parison of statistical models, SVM, and neural networks is
done in ref 12. The available dataset is usually split into
two parts: the training sample, used to select the model;
and test samples, used to evaluate its accuracy (also called
capacity or generalization). Most methods are “asymptoti-
cally consistent”; i.e., they would produce the really best
model, provided that an infinite amount of training data was
available. Thus, the focus of the machine learning approach
is to optimize performances for finite sample sizes. One
should ask what is the quantity that is necessary for such a
methodology. One possible solution may be to test the
different strategies investigated with numerous benchmarks,
that is, virtual data usually in the form of mathematical
functions. Such an approach permits one to better understand
the algorithm functioning and also to set some of the internal
parameters. However, the parameters’ setting is independent
of the benchmark, and a way to characterize the mostly
unknown real search space for comparison with the bench-
marks remains to be found. Thus, a criterion of great appeal
would be the calculation of a value describing the complex-
ity, for optimization algorithms, of a given benchmark or
the “learnability” considering machine learning,26 thus al-
lowing one later to obtain the criterion value or range for a

Table 1. First Subset of Data: Epoxidation Catalysts
Described Using Just Two Synthesis Variables, and
Additional Data for Olefin Epoxidation Study

xi CTMA/(Ti + Si) OH/(Ti + Si) class

(a) First Subset of Data: Epoxidation Catalysts
Described Using Just Two Synthesis Variables

1 0.3424 0.1615 1
2 0.3678 0.2173 1
3 0.3807 0.2265 1
4 0.3689 0.1558 1
5 0.2674 0.2075 -1
6 0.2515 0.1833 -1
7 0.3082 0.1993 -1
8 0.2889 0.2162 -1
9 0.2800 0.1680 -1

(b) Additional Data for Olefin Epoxidation Study
10 0.2259 0.2014 1
11 0.2087 0.1764 1
12 0.2214 0.1508 1
13 0.1873 0.1658 1
14 0.1920 0.2080 1
15 0.1871 0.1479 1
16 0.2439 0.1465 1
17 0.4011 0.2450 1
18 0.1485 0.1450 -1
19 0.4004 0.2567 -1
20 0.2569 0.2394 -1
21 0.4180 0.2060 -1
22 0.4160 0.1800 -1
23 0.2862 0.2472 -1
24 0.3642 0.2538 -1
25 0.1510 0.1641 -1
26 0.1439 0.1488 -1
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real study on the basis of a comparison of performances.
However, the suitable sample size required for different
applications strongly depends on the complexity of the
problem (i.e., the type of relationships between input/output
variables) and the number of input variables. Thus, the
minimum sample size remains nearly impossible to deter-
mine. Moreover, both the distribution (i.e., sampling) of each
catalytic experiment (i.e., input values) in the entire search
space, and the distribution of the observed outputs influence
the performances of the algorithms.15 Finally, it is important
to emphasize that the decision about which input variables
must be considered to solve a scientific problem is directly
related to the success of the investigation, and thus, the
discussion about the complexity of the search space is
actually distorted by the fact that the mentioned space has
been partially defined by the researcher.27

The Linearly Separable Case.Linear classification is first
presented, then the dual representation of linear machine
learning is introduced. However, this limited computational
power leads to the topic of “kernel-induced feature spaces”.

The training sample containsl catalysts, called examples,
and notedxi ∈ ø, whereø28 represents the whole search space.
When each example has to be classified, in agreement with
a predefined criterion, a classifier algorithm, that is, SVM,
must be able to propose a general way of doing it. It is first
considered alinearly separableexample, that is, the case
that two classes can be perfectly discriminated with a
hyperplane [w][x]+ [b] (Figure 2). In the rest of the text,
vectorial or matrix notations are removed. In this case, the
mathematical constraints permitting us to verify that each
example is assigned correctly to its class are given by eq 1.
The type of response required by the algorithm, and
permitting the formulation of eq 1, must have the formyi )
(1, that is,yi ∈ {-1, 1}. For multiclass problems, the SVM
methodology can also be applied by means of merging
classes and applying iteratively the two-class strategy.
Considering the example drawn in Figure 2 and one

particular hyperplane, new examples will be associated with
a given class, depending on the estimatedyi (noted ỹi) value,
more precisely, the sign of y˜ i. The main problem deals with
the fact that many different hyperplanes can be chosen. It
sounds logical that the classifier with the greatest generaliza-
tion is the one which goes the furthest from all examples
while respecting eq 1. Thus, an interesting criterion is to
maximize the so-called margin (t in Figure 2), that is, twice
the distance between the nearest points and the hyperplane.
In agreement with eq 1, the margin is equivalent to 2/|w| in
such a way that, if one wants the margin to be maximized,
the norm29 of w (|w|) must be minimized. Taking into
account that a 3D plane is completely fixed (i.e., blocked)
by means of a minimum of three points, the margin is just
related to such examples that define the plane. These special
points are calledsupportVectors, and consequently, it will
not be necessary to consider the rest of the examples for
defining the class of new unknown samples. This is of great
appeal because SVM will be preferred to other methodologies
when considering a huge amount of data (e.g., even millions
of cases) to be treated.

Not Linearly Separable Case.Real-world applications
often require a more expressive hypothesis space than linear
functions can provide. When considering the epoxidation
catalysts (Table 1b), Figure 3 shows that any linear separation
allows one to discriminate perfectly the two classes. For
constructing nonlinear decision functions, nonlinear map-
pings can be used to transform the original data, called “input
space”, into another high-dimensional feature space in which
a linear learning methodology can then be applied (Figure
3, top left to top right). SVM methodology differs from other
common strategies on different points; the construction of a
separating hyperplane in the “feature space”, which leads to
a nonlinear decision surface in the original space (Figure 3,
bottom right), is the first distinction. Therefore, one still looks
for linear separations but into a higher dimensional space.
SVM can use a different family of functions,Φ.30 Increasing
the number of dimensions is useful to classify nonseparable
data, but it also increases the risk of overfitting the data.
For example, considering the dataset shown in Table 1a,b,
other transformations could have been applied, such as those
depicted in Figure 4. Therefore, one should start with the
simplest (or simple) functions (i.e.,Φ is restricted to a given
family of functions; for example, linear or polynomial) which
allows one to minimize the overfitting problem.

Another issue, usually more frequent in nonlinear prob-
lems, is the fact that a reasonable level of error/level of
generality ratio must be chosen, and thus, it is advisable to
assume a certain level of error to decrease the risk of
overfitting. In addition to keeping the|w| minimization
criteria, other variables, called slack variables or “slacks”,
notedêi g 0, are defined as a way of penalizing examples
that are on the wrong side of the hyperplane (i.e., misclas-
sified). The performance of the classifier can be improved
by controlling the importance of both the classifier capacity

Figure 2. A simple separable case, margin, and optimal hyperplane
using the examples of Table 1. Squares represent low-performance
catalysts (class B coded-1 for SVMs), and the circles stand for
high-performance catalysts (class A coded+1).

wixi + b g 1 if yi ) 1 andwixi + b e 1

if yi ) -1 w yi(xiw + b) - 1 g 0, ∀i (1)
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(via |w|) and the sum of the slacksC ∑ êi (Figure 5).C is
a parameter to be tuned by the user permitting a tradeoff
between classification rate and capacity.

This leads to kernel-induced feature spaces. Kernel func-
tions can implicitly combine the two steps (nonlinear
mapping and linear learning) into one step in constructing a
nonlinear machine learning.

Kernel Functions. Considering linear functions in a
variable vector, given a convex space, we obtain a convex
program that can exploit the methods of convex optimization:
31 To find the optimal hyperplane,Ψ ) {|w|2}/{2} must be
minimized, with eq 1 as constraint, which gives the
Lagrangian formulation:L(w, b, R) ) Ψ - ∑ {Ri[f(x, w, b)
- 1]}. The explanation of such a technique is not compulsory

for such a quick overview of SVM. Readers are referred to
ref 32 for constrained optimization method details. One has
simply to be reminded that the search space’s being convex
allows finding an optimal solution using such optimization
tools. The Lagrangian solution isf(x) ) ∑ Riyixi‚x + b.

With such a Lagrangian formulation, only the training data
(i.e.,x) appears in the form of dot products33 between vectors.
This key property allows generalizing SVMs to the most
general case. If we make use of kernel functions, it is
permissible to replace (xi‚xj) with k(xi‚xj) into the Lagrangian
solution. Meanwhile, all the previous considerations hold,
since we are doing a linear separation, but in a different
space,p. Φ: øfp

xfx, k: ø × øf R. With k(xi, xj) ) xj‚xi )

Φ(xi)‚Φ(xj), Φ does not need to be explicitly known. For

Figure 3. Nonlinear mapping from original 2D space to 3D (dataset of Table 2).Φ(x, y) ) z ) a + bx + cx2 + dx3 + ex4 + fx5 + gy +
hy2 + iy3 + jy4; a ) -6188.2,b ) 26 385.3,c ) -108 205.1,d ) 64 961.9,e) 448 045.1,f ) -674 392.5,g ) 94 525.8,h ) -760 344.4,
i ) 2 679 148.6,j ) -3 491 334.4.

Figure 4. Nonlinear mapping from the same dataset using more complex functions.

Support Vector Machines Journal of Combinatorial Chemistry, 2006, Vol. 8, No. 4587



example, if xi ) (xi1, xi2), Φ(xi) ) (xi1
2,x2xi1

xi2
, xi2

2), we
obtain34 Φ(xi)‚Φ(xj) ) (xi‚xj)2.

After training,w ∈ p is obtained, and during the test phase,
the SVM is used by computing the sign of dot products of
a given test pointxi, as shown in eq 2. This equation presents
the use of trained SVM for a new example “x”, where f is
the discriminative function andsi are the support vectors.
Figure 6 shows the support vectors from calculations on the
merge dataset from Table 1a,b. Catalysts corresponding to
the given support vectors arex1, x19, andx25 in Table 1a,b.
The separation rule is given by the indicator function using
the dot product between the patterns to be classified (x), the
support vectors, and a constant threshold,b. Note that in eq
2. only the SV are used in the sums. The usual kernelsk(xi,
xj)are polynomials (γxi

Txj + r)d, γ > 0; RBF exp(-γ|xi -

xj|2), γ > 0; or sigmoid tanh (γxi
Txj + r) with γ, r, d as the

few parameters to be set by the user.
The Theory behind SVM: VC Dimension and SRM.

The exploration and formalization of generalization concepts
has resulted in one of the shining peaks of the theory of
statistical learning on which SVMs are based. The problem
related to the estimation off can be achieved with numerous
methods.35 We have only considered here the approach
proposed by Vapnik,30 which is based on obtaining bounds
on the risk, R. To do so and, thus, to lead to good
generalization, SVMs employ the Vapnik and Chervonenkis
(VC) dimension36 (notedh), which characterizesΦ and is
used to obtain the bounds onR, that is, for minimizing the
risk of overfitting.

To introduce the VC dimension, let us take an easy
example. Thus, considering the two-class problem, 2l rep-
resents the total number of possibilities forl examples to be
labeled. If for each possibility there exists at least one
function belonging toΦ that correctly associates the labels
to every example, the whole set of points is said to be
“shattered” byΦ (Figure 7a). The VC dimension ofΦ, noted
h, is defined as the maximum number of points that can be
shattered byΦ. For a complete presentation, see ref 37. Here,
the reader must understand that the VC dimension character-
izes the function that will permit one to discriminate between
classes. Such criterion indicates, considering all possible
cases of labeling, if the function considered can do such a
work. With this example, it is easy to understand why linear
functions are relatively weak.

Therefore, the learning phase consists of determining the
right function that minimizesR, considering the whole set
of functions inΦ, the so-called risk,R. As said earlier, since
P is unknown, the risk is also unknown; however, the
empirical risk (Remp) can be measured on a particular sample.
h permits one to link the real risk,R, to Remp. The principle
of risk minimization (SRM) suggests a principled way of
choosing the optimal class of functions by choosing the one
that minimizes the risk bound over the entire structure.

Taking into account the probability (1- η), eq 3 is true.
φ is called VC confidence.Φ, which minimizes the right-
hand side, gives the lowest upper bound. The VC confidence
is a monotonic increasing function ofh, whateverl. It can
can be observed that (i) it is independent fromP(x, y); (ii)

Figure 5. Linear separating hyperplane in a nonseparable case and
C influence.

Figure 6. Support vectors considering data from Tables 1and 2. SVs filled with white are visible, unfilled ones are behind the function.
Points circled with black are below the plane and the one circled with blue is above it.

sgn(f(x)) with f(x) ) ∑
i)1

NS

RiyiΦ(si)‚Φ(x) + b )

∑
i)1

NS

Riyik(si, x) + b (2)
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it is difficult to reach a good generalization from a small
sample: the lowerl is, the greater the difference betweenR
andRemp can be; and (iii) a classifier that is chosen with a
broad class of functions, that is,h is high, can overfit and,
thus, gives a risk that is greater than the measured one. Since
R cannot be directly minimized, the strategy is to minimize
the upper bound. SRM (i)introduces nested structureon
approximating functions, (ii)minimizes Rempon each element
producing increasingly complex solutions (models), and (iii)
selects optimal modelusing VC bounds on prediction risk.
A structure is a nested set classes of functionsSi such that
S1 ⊃ S2 ⊃ .... Since classes of functions are nested,Remp

decreases as the complexity of classes of functions (and
hence,h) increases. The risk bound is the sum ofφ andRemp

over the entire structure.

SVMs versus Classification Trees

The SVMs methodology is tested versus classification
trees, and generalization is evaluated and discussed for both
methods.

Classification Trees Building.Numerous algorithms have
been used: ID3, C4.5, a generalized version of ID3 (noted
GID3); Assistant-86, Sipina; Improved ChAID (noted Imp.
ChAID); a limited search induction tree algorithm (noted
Catlett); an improved version of C4.5 (noted Imp. C4.5);
and a cost-sensitive version of C4.5.38 Note that Sipina does
not generate trees, but graphs, since it allows the merging
of leaves.

CT building proceeds in two complementary and succes-
sive steps. First, the training sample is divided into two
subsets (growing samples and pruning samples), then the tree
is built top-down, starting with an empty tree (composed of
one single node, called the top node or root). During this
process, the input space is split into subregions, where the
output variable remains constant. At each step, a node is
selected for splitting; i.e., if the corresponding subset of
samples corresponds to a constant output, the node becomes
a leaf. Otherwise, the local sample is used to select an optimal
split so as to reduce as much as possible the variance (or
entropy) of the output variable in the corresponding subsets.
To remove the parts of the tree that are not generalizable,
the pruning samples that have not been used for tree-growing
are used. Together, these two steps allow building a tree that
really reflects the relationships among input and output

variables, as they may be inferred from the training sample.
During the tree-growing, each time a tip node is split, leads
to an increase in complexity, and the data fit improves on
the growing sample. Once the tree gets large, the speed of
improvement slows down because the nodes that are
developed are deeper in the tree and, thus, correspond to
smaller subsamples. Tree pruning operates in the reverse
direction. On the pruning sample, removing test nodes from
the tree first increases the data fit, then above a certain level,
starts to decrease the quality of the tree. Thus, there is an
optimal level of complexity above which the tree would
overfit the data, and while below, it would underfit. In
practice, the optimal complexity depends on problem features
and the size of the available samples.

Sampling, Training Procedure, and Cross-Validation.
Different methods can be used to assess the predictive
accuracy (e.g., error rate). Both of the two most famous
techniques are quickly depicted. The first one, called “split
sample” uses a test sample, that is, examples that have not
been used at all during the tree-building, neither for growing
nor for pruning, as said before. The second one, named cross-
validation (CV), is a method for estimating generalization
error, based on “resampling”.39 In k-fold CV, the dataset is
divided into k subsets of (approximately) equal size. The
algorithm is trainedk times, each time leaving out one of
the subsets from training, and using only the omitted subset
to compute whatever error criterion, such as misclassification.
If k equals the sample, this is called “leave-one-out” CV.
On the other hand, “leave-V-out” is a more elaborate and
expensive version of CV that involves leaving out all possible
subsets ofV cases. Leave-one-out CV often works well for
estimating generalization error for continuous error functions,
such as the mean squared error, but it may perform poorly
for discontinuous error functions, such as the number of
misclassified cases.k-Fold CV is preferred for the studies
in hand.44 If k gets too small, the error estimate is pessimisti-
cally biased because of the difference in training-set size
between the full-sample analysis and the CV analyses. Note
that CV is quite different from the “split-sample” method
that is commonly used. In the split-sample method, only a
single subset (the validation set) is used to estimate the
generalization error, instead ofk different subsets; i.e., there
is no “crossing”. The distinction between CV and split-
sample validation is extremely important40 because CV is
markedly superior for small data sets.

Figure 7. White and black colors represent the two different classes in R2: (a) This part shows thatΦ restricted to linear functions can
shatter the given sample; note that the 2l possibilities are drawn. (b) This part presents a set of three points that cannot be shattered byΦ.
For a givenh, there exists at least one sample ofh points that can be shattered byΦ; but assuming that every set ofh points can be
shattered is generally not true. (c) This part shows thatΦ is not able to shatter at least one set of four points in R2, the VC dimension of
the linearΦ in R2 is three (h ) 3). The VC dimension of the set of oriented hyperplanes in Rn is n + 1.

R(R) e Remp(R) + φ

with φ ) x1
l
[h(log(2l/h))] + 1 - log(η/4) (3)
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Results

Olefin Epoxidation. Table 2 shows the classification
performances and confusion matrices obtained with six
different classification trees using three differentk-fold CVs
(k ) 5, 10, and 15) for olefin epoxidation dataset (see
Supporting Information). The confusion matrix shows the
average classification (real A predicted as A or real B
predicted as B) or misclassification (real A predicted as B,
i.e., false negative; or real B predicted as A, i.e., false
positive). The average percentage of classification or mis-
classification is given in the first line. The nominal value of
cases and the corresponding standard deviation appear in the
second line in parentheses. For example, a 5-fold CV is
performed on ID3-IV. It means that the 120 cases are
randomly separated into 5 groups of 24 catalysts. The
algorithm is trained five times, each time a different set of
four groups is selected, and the algorithm is evaluated with
the fifth one. Therefore, ID3 obtains 40% of A recognized
as A (i.e., an average of 9.6 catalysts and a standard deviation
of 2.33), 37.5% of B recognized as B, 20% of false negative,
and 2.5% of false positive. The sum (9.6+ 4.8 + 0.6 + 9)

equals 24, as given by thek value. On the other hand, the
few parameters of SVMs are investigated and presented in
Table 3. For the polynomial kernel function ((γxi

Txj + r)d, γ
> 0), the different parameters (d, r, γ) are, respectively, the
polynomial degree, a coefficient, and gamma. The selection
of an appropriate kernel function is important, since the
kernel function defines the feature space in which the training
set examples will be classified. The capacity, notedC, is
also a parameter of the method (independent from the chosen
kernel) and can be seen as a way to control overfitting, since
it is a tradeoff between error and margin.C enters into the
dual representation of the Lagrangian formulation as a
constraint onRi:0 e Ri e C. In our case, and due to the
importance of the capacity setting, we have chosen5- and a
10-fold CVs for defining/optimizing the best value ofC,
which controls error penalties (largeC means larger penal-
ties). In Figure 9, the recognition performances of the
different algorithms for both SVMs and classification trees
are compared.

Isomerization Catalysts.Table 4 and Figure 10 show the
classification performances and confusion matrices obtained

Table 2. Classification Tree Performances on Epoxidation Dataa

class classification trees

cross-validation real predicted ID3-IV GID3 ASSISTANT C4.5 Sipina Imp. ChAID

5-fold av %
(nb-std)

A A 0.4
(9.6-2.33)

0.392
(9.4-3.44)

0.325
(7.8-1.6)

0.4
(9.6-2.42)

0.383
(9.2-1.72)

0.392
(9.4-2.73)

A B 0.2
(4.8-1.94)

0.267
(6.4-2.24)

0.183
(4.4-2.33)

0.2
(4.8-1.72)

0.192
(4.6-1.74)

0.25
(6-1.67)

B A 0.025
(0.6-0.8)

0.033
(0.8-0.75)

0.1
(2.4-1.96)

0.025
(0.6-1.2)

0.042
(1-0.89)

0.033
(0.8-0.4)

B B 0.375
(9-1.79)

0.308
(7.4-2.42)

0.392
(9.4-1.5)

0.375
(9-2.83)

0.3832
(9.2-0.98)

0.325
(7.8-1.17)

10-fold av %
(nb-std)

A A 0.4
(4.8-1.89)

0.375
(4.5-1.28)

0.342
(4.1-1.51)

0.392
(4.7-1.1)

0.3
(3.6-1.36)

0.392
(4.7-1.49)

A B 0.233
(2.8-1.54)

0.275
(3.3-1.49)

0.15
(1.8-1.25)

0.225
(2.7-1.55)

0.208
(2.5-0.67)

0.242
(2.9-0.94)

B A 0.025
(0.3-0.64)

0.05
(0.6-0.66)

0.083
(1-0.89)

0.033
(0.4-0.49)

0.125
(1.5-1.28)

0.333
(0.4-0.49)

B B 0.342
(4.1-1.87)

0.3
(3.6-1.11)

0.425
(5.1-1.3)

0.35
(4.2-2.04)

0.367
(4.4-1.2)

0.333
(4-1.73)

15-fold av %
(nb-std)

A A 0.375
(3-1.21)

0.391
(3.13-1.59)

0.341
(2.73-1.24)

0.391
(3.13-1.15)

0.334
(2.67-1.14)

0.391
(3.13-1.63)

A B 0.191
(1.53-0.96)

0.266
(2.13-0.62)

0.166
(1.33-1.14)

0.234
(1.87-1.02)

0.175
(1.4-1.2)

0.275
(2.2-1.22)

B A 0.05
(0.4-0.8)

0.034
(0.27-0.44)

0.084
(0.67-0.94)

0.034
(0.27-0.44)

0.091
(0.73-0.77)

0.034
(0.27-0.44)

B B 0.384
(3.07-1.18)

0.309
(2.47-1.31)

0.409
(3.27-1.12)

0.341
(2.73-1.53)

0.4
(3.2-1.56)

0.3
(2.4-1.36)

a For each algorithm, three different cross-validations have been run (k ) 5, 10, and 15). For each combination ofk and algorithm, the
confusion matrix is given.

Table 3. SVMs Performances on Epoxidation Dataa

name kernels
degree

(d)
coefficient

(r)
gamma

(γ)
cost parameter

(C) A-A A-B B-A B-B
recognition rates

(A-A, B-B)

Lin1 linear - 8 0.33 0.38 0.00 0.29 0.63
Poly1 polynomial 3 10 0 7 0.33 0.29 0.00 0.38 0.71
Poly2 polynomial 3 2 0 9 0.25 0.21 0.08 0.46 0.71
Sig1 sigmoid 0 0.25 5 0.38 0.29 0.00 0.33 0.71
Sig2 sigmoid 0 30 2 0.17 0.13 0.17 0.54 0.71
RBF1 RBF 20 5 0.33 0.17 0.00 0.50 0.83
RBF2 RBF 9 9 0.33 0.13 0.00 0.54 0.88
RBF3 RBF - 15 7 0.33 0.08 0.00 0.58 0.92

a 5-Fold and 10-fold cross-validations have been used for defining the best value ofC, which controls error penalties (largeC means
larger penalties).
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with nine different classification trees forn-paraffin isomer-
ization data, whereas Table 5 shows the SVM recognition
results when different parameters and kernel functions were
considered. Ten-fold CV has been used for defining the best
value of C. Classification results obtained with both tech-
niques are graphically compared in Figure 10. For each CT
algorithm, three differentk-fold CV have been run (k ) 4,
6, and 8).

Discussion

It is clear from the rules extracted by all classification trees
(Figure 8) that OH-/(Si + Ti) and Ti/(Si + Ti) are always
the most discriminative variables. In other words, these
features allow one to separate most quickly the samples into
the two classes. Actually, the concentration of OH- in the
synthesis gel controls the solution of the silica precursors

Figure 8. Four different decision graphs on epoxidation data.

Figure 9. Performance comparison of SVMs and decision tree algorithms, considering only true positives and true negatives, for the
epoxidation dataset. The recognition rates for classification trees are the average on eachk-fold cross-validation withk ) {5, 10, 15}.
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and the crystallization/organization of siliceous species that
induce the formation of mesoporous structures. Indeed, no
active catalysts were obtained above a limiting concentration

of OH-/(Si + Ti) ∼ 0.27, since concentrations above this
value lead to low surface amorphous materials. With respect
to Ti concentration, tetrahedrally coordinated titanium species

Table 4. Classification Tree Performances on Isomerization Data

class classification trees

cross-
valida-

tion real
pre-

dicted Sipina
ASSIS-
TANT C4.5

cost-
sensitive

C4.5 Carlett
Imp

ChAID Imp C4.5 GID3 ID3

4-fold
av %
(nb-std)

A A 0.10
(2-1.22)

0.11
(2.25-0.83)

0.13
(2.75-1.09)

0.14
(3-2)

0.12
(2.5-2.5)

0.00
(0-0)

0.00
(0-0)

0.01
(0.25-0.43)

0.13
(2.75-1.48)

A B 0.05
(1-1.73)

0.04
(0.75-0.83)

0.01
(0.25-0.43)

0.00
(0-0)

0.02
(0.5-0.5)

0.14
(3-1.87)

0.14
(3-2.12)

0.13
(2.75-0.83)

0.01
(0.25-0.43)

B A 0.05
(1-1.22)

0.06
(1.25-0.43)

0.05
(1-0.71)

0.08
(1.75-2.49)

0.05
(1-1)

0.00
(0-0)

0.05
(1-1)

0.04
(0.75-1.3)

0.05
(1-0.71)

B B 0.81
(16.75-1.79)

0.80
(16.5-1.12)

0.81
(16.75-1.64)

0.77
(16-1.87)

0.81
(16.75-16.75)

0.86
(17.75-1.92)

0.81
(16.75-1.48)

0.82
(17-1.22)

0.81
(16.75-2.28)

6-fold
av %
(nb-std)

A A 0.08
(1.17-1.07)

0.12
(1.67-0.94)

0.10
(1.33-1.37)

0.13
(1.83-1.07)

0.11
(1.5-0.96)

0.01
(0.17-0.37)

0.01
(0.17-0.37)

0.01
(0.17-0.37)

0.13
(1.83-1.77)

A B 0.06
(0.83-1.21)

0.02
(0.33-0.47)

0.05
(0.67-0.75)

0.01
(0.17-0.37)

0.04
(0.5-0.5)

0.13
(1.83-1.07)

0.13
(1.83-2.03)

0.13
(1.83-1.34)

0.01
(0.17-0.37)

B A 0.06
(0.83-0.69)

0.05
(0.67-0.75)

0.05
(0.67-0.75)

0.08
(1.17-1.07)

0.05
(0.67-1.11)

0.05
(0.67-1.11)

0.02
(0.33-0.75)

0.04
(0.5-1.12)

0.05
(0.67-0.75)

B B 0.80
(11-1.73)

0.81
(11.17-1.21)

0.81
(11.17-1.57)

0.77
(10.67-1.37)

0.81
(11.17-1.21)

0.81
(11.17-1.07)

0.83
(11.5-2.22)

0.82
(11.33-1.37)

0.81
(11.17-2.19)

8-fold
av %
(nb-std)

A A 0.13
(1.38-0.86)

0.10
(1-0.87)

0.08
(0.88-0.78)

0.10
(1-1)

0.10
(1-0.5)

0.04
(0.38-0.7)

0.04
(0.38-0.48)

0.05
(0.5-0.71)

0.13
(1.38-1.11)

A B 0.01
(0.13-0.33)

0.05
(0.5-0.71)

0.06
(0.63-1.32)

0.05
(0.5-0.71)

0.05
(0.5-0.5)

0.11
(1.13-1.17)

0.11
(1.13-1.05)

0.10
(1-1.22)

0.01
(0.13-0.33)

B A 0.05
(0.5-0.71)

0.04
(0.38-0.48)

0.02
(0.25-0.66)

0.08
(0.88-0.93)

0.02
(0.25-0.43)

0.02
(0.25-0.43)

0.05
(0.5-0.71)

0.05
(0.5-0.71)

0.07
(0.75-0.97)

B B 0.81
(8.38-0.99)

0.82
(8.5-0.87)

0.83
(8.63-0.99)

0.77
(8-1.41)

0.83
(8.63-0.86)

0.83
(8.63-1.32)

0.81
(8.38-1.11)

0.81
(8.38-1.22)

0.78
(8.13-1.27)

Figure 10. Performance comparison of the best SVM and decision trees, considering the full confusion matrix, for the isomerization
dataset. The recognition rates for classification trees are the average on eachk-fold cross-validation withk ) {5, 10, 15}.

Table 5. SVMs Performances on Isomerization Data

SV class penalties

kernels
coefficient

(r)
degree

(d)
gamma

(γ)

cost
parameter

(C)
nb. of
SV

nb. of
bounded

SV 1 2
train
(75)

test
(25)

overall
(100) 10-CV

class
1

class
2

CV k
value

capacity
boundary

RBF 0.059 0.5 19 14 8 11 87.09 80.952 85.542 87.09 10 1 6
RBF 0.059 3 22 13 4 18 80.65 85.71 81.93 80.65 10 1 8
RBF 0.059 2 24 15 5 19 79.03 85.71 80.72 79.03 10 1 6 2
RBF 3 1 30 23 8 22 79.03 85.71 80.72 79.03 3 1 10
poly 0 3 0.059 2 62 61 8 54 77.42 85.714 79.52 65.33 7 1 10 2
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are the active epoxidation sites, whereas octahedrally coor-
dinated ones promote secondary reactions and the subsequent
catalyst deactivation. Therefore, the amount of titanium
should be located in a region where the maximal number of
active sites are formed while minimizing other titanium
species. The other two variables refer to the concentration
of surfactants, and they influence the type of mesoporous
structure and its degree of long-distance order, but the
variation of these material properties is not as decisive for
the final catalytic activity as OH-/(Si + Ti) and Ti/(Si +
Ti). Looking at the influence of CTMA concentration, there
can be seen two different regions where good catalysts
appear. Two different materials have been found in the high
activity areas defined by CTMA. Roughly speaking, lowest
OH- values, independently of CTMA, correspond to a
hexagonal poor arrangement (MCM-41), whereas highest OH
(always below 0.27 molar ratio) and CTMA values lead to
a cubic arrangement (MCM-48), both well-known mesopo-
rous structures produced by self-assembling of CTMA
micelles (liquid crystals) and silica. This analysis of the
whole epoxidation data by the different classification tree
algorithms is fully in agreement with the human-based
analysis depicted in ref 17. Conversely, the Sipina algorithm
allows obtaining a different type of rule, since it is possible
to merge conditions (merging leaves). For example, bad
catalysts (class B in Figure 8, Sipina) are obtained with a
probability of 94% when OHg 0.26 or when OH< 0.26
andTi < 0.01. This statement is also in agreement with the
human-based observations.

Figure 9 presents the recognition performances of the
different algorithms for both SVMs and classification trees.
It is clear that simple SVMs have medium performances
rather equal to CT performances; however, RBF kernel with
different sets of parameters exhibits very high levels of
recognition rates, which outperform every classification tree
previously tested. The SVM-RBF3 has a 92% recognition
rate and 8% false negatives, which is the lowest level among
all strategies. Decision trees are generally preferred over other
nonparametric techniques because of the readability of their
learned hypotheses and the efficiency of training and
evaluation. Furthermore, the risk of overfitting the training
data is less severe for SVM models, since complexity is
considered directly during the learning stage.

On the other hand, the composition of isomerization
catalysts was optimized by choosing different supports and
promoters and by tuning simultaneously their loading (wt
%). As a result of the optimization, the best catalysts showed
combinations of zirconia, with sulfur as an acidity enhancer
and diverse metallic promoters. Isomerization data shows a
low amount of catalysts (14.45%, Figure 1) with an accept-
able activity; therefore, in this case,it is the correct prediction
of class A catalysts of major importance. In other words,
false negatives should be minimized. The minimization of
false negatives is very important when dealing with HT
experimentation programs for catalyst or new materials
discovery, especially when exploring multicomponent cata-
lysts. Typically, in such discovery programs, most of the
screened materials show undetectable catalytic activity, and
very few exhibit some activity (so-calledhits). The appropri-

ate recognition (and prediction) of these hits is crucial for
the subsequent optimization steps in the next experimentation
rounds. In fact, false negatives imply that promising/
interesting catalyst composition will be neglected, and the
further optimization will not take into account such important
catalytic compositions; thus, the convergence is strongly
prejudiced.

Classification trees (Figure 10) show rather good recogni-
tion rates for isomerization data; however, some algorithms
fail totally when considering the learning on the interesting
class (i.e., A), such as Imp. C4.5, GID3, and Imp. ChAID.
Nevertheless, SVM models (Figure 10) allow one to obtain
100% of recognition of active catalyst, while the number of
false positives is very low (i.e., more than 82%). The
confusion matrix for all SVMs is the following: 100% of A
predicted as A and 82.35% of B recognized as B. RBF-4 is
kept as the best model (Table 5). Linear penalty functions
(Table 5) have been used to penalize classification violations
in SVM classifier design. Note that it might be argued that
it is difficult to calculate the cost of classification errors in
many real-world applications. Thus, it is possible that an
algorithm that ignores the cost of classification errors may
be more robust and useful than an algorithm that is sensitive
to classification errors. However, in our case, the results are
much better than without penalties, since not only SVM
outperforms (Figure 10) CT, but also becauseC can be kept
rather low and the classification rates remain stable for train,
test, and CV.

Previous knowledge is applied for the design of the
catalytic parameter space to be explored. However, it is
usually very difficult to have an a priori knowledge about
the topology of the output space, especially when a high
number of synthesis parameters are varied simultaneously.
SVM will operate correctly even if the designer does not
know exactly which features of the training data are being
used in the kernel-induced feature space, but integrating a
priori knowledge is possible through SVM kernel functions.
The kernel expresses prior knowledge about the phenomenon
being modeled, encoded as a similarity measure between two
vectors.

Overfitting is traditionally defined as training some flexible
representation so that it memorizes the data but fails to
predict well. There are many kinds of overfitting, and a
nonexhaustive list is given in Table 6. The first case (the
most current) is handled in SVMs through the definition of
the kernels. One should start with the simplest one: that is,
linear; then polynomials; and finally, sigmoid and RBF, as
is done in this study. The second and third causes of
overfitting have been handled, for each study that has been
conducted here, throughk-fold CV with different values of
k. The fourth cause is common in combinatorial studies
because clustering methods are often used to define groups
of catalysts on the basis of their independent features. When
a given clustering method is applied before a learning
algorithm, the performance of this learning strategy cannot
be directly compared to another that only takes into account
the raw values. Moreover, one has to be careful not to
integrate the test set into the clustering method, since in
reality, one should assign the group label to new catalysts
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on the basis of supervised learning methods. The fifth cause
has been illustrated through the introduction of SVM. We
start with a subset of both variables and cases (Table 1a,b)
and progressively show that the selection of catalysts allows
one to find a good solution for the given set but that these
results are not generalizable (Figures 2, 3). The sixth cause
is quite common when comparing classification algorithm
and regressions for classes defined through a threshold
setting. The last cause is very common in pure computer
science domain, since some benchmarks have been available
through the Web for a long time. Therefore, understanding
what makes the benchmark difficult for a given method can
permit one to adapt the given algorithm. Such strategy
produces very specific algorithms. One should always test
its methodology on benchmarks, since different levels of
complexity can be artificially created, and the cost of
experiments is null. However, as said before, the correlation
between benchmarks and real data is not straightforward,
since surface similarity should be handled properly.

Conclusions

SVM methodology has been evaluated using data derived
from two different industrial fields: oil refining and petro-
chemistry, and the selected reactions for each application
are gasoline isomerization and olefin epoxidation, respec-
tively. It has been shown that SVMs outperform other
algorithms by improving the recognition performance (gen-
eralization) results. More specifically, the performance of
SVMs and different classification trees has been compared.
SVM methodology allows one to obtain the optimal solution
for the given set of training data and parameters. This is

due to the fact that the space search is convex; the method
is based on Lagrangian calculations with a unique optimal
solution, avoiding the local minima, which are one of the
pitfalls of perceptrons.
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